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ABSTRACT Thin structures are generally solved by the Finite Element Method (FEM), using plate or 

shell finite dements which have many limitations in apphcations, such as numerical locking, edge effects, 

length scaling and the cnvergence problem. Recently, by proposing a new approach to treating the nearly- 
singular integrals, Liu et al. developed a BEM to successfully solve thin structures with the thickness-to- 

length ratios in the micro- or nano-scales. On the other hand, the meshless Regular Hybrid Boundary Node 
Method (RHBNM), which is proposed by the current authors and based on a modified functional and the 
Moving Least-Square (MLS) approximation, has very promising applications for engineering problems owing 

to its meshless nature and dimension-reduction advantage, and not involving any singular or nearly-singular 
integrals. Test examples show that the RHBNM can also be applied readily to thin structures with high accu- 

racy without any modification. 

KEY WORDS shell-like structures, meshless, moving least squares approximation, hybrid boundary node 

method 

I .  INTRODUCTION 
The Finite Element Method (FEM) has been a successful tool for the analysis of plate and shell 

structures in engineering using plate and shell elements. The plate and shell elements are based on 

plate and shell theories in which many assumptions about the geometry, loading and deformation of 

structure are introduced when a 3-D body is abstracted into a 2-D model. Therefore, various pitfalls 

are also introduced, such as numerical locking, edge effect, length scaling and especially the conver- 
n Ill "~, gence problem (the FEM may not converge or converge to wrong answers under certain conditio s / .  

restricting the application of the FEM in many ways. For example, when a plate is linked to a block 

body in a structure, different elements have to be used and special techniques are required to deal with 

the linkage, resulting in lower accuracy (especially .for the stresses) at or near the linkage than else- 

where, while the stresses at the linkage are of greater concern to engineers. Furthermore, it is often 

difficult for structure analyzing engineers to distinguish among thin shell, thick shell and blocks, to 

choose the right type of finite elements accordingly in the analysis of a complicated structure. In view 

of above fact, it is desirable to turn to the 3-D elasticity theory in building numerical models for plate- 

and shell-like structures, which have nonuniform thicknesses or are linked to bulky solids, in a unified 

formulation. Unfortunately, this has not been achieved in the FEM using the plate and shell theories, 

although a great deal of research effort has been made in the last three decades. 
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The Boundary Element Method (BEM) has been regarded as unsuitable for dealing with thin 

structures for quite some time. Recently, Liut et al. E2.31 have proved theoretically and verified numeri- 

cally that the BEM does not degenerate when it is applied to a thin shell-like structure, contrary to the 

case of crack-like problems. By proposing a new approach of treating nearly-singular integrals, they 

successfully developed the BEM to solve thin structures with the thickness-to-length ratios in the micro- 
o r  n a n o - s c a l e s  I2'3; . 

Meshless methods have been gaining popularity ever since the publication of the element free 

Galerkin (EFG) method by Belytschko et al. I41, in which although no mesh is required for the inter- 

polation of the solution variables, background cells are inevitable for the integration of ' energy'. In 

1998, two meshless methods, the Meshless Local Boundary Integral Equation (MLBIE) method by Zhu 

et al. I51 and the Meshless Local Petrov-Galerkin (MLPG) approach by Atluri et al. I6~ were developed. 

Both methods use local weak forms over a local sub-domain and shape functions from the MLS approxi- 

mation, and lead to truly meshless ones. 

In 1997, Mukherjee et al. IT] proposed a Boundary Node Method (BNM), which combines the 

MLS with Boundary Integral Equations (BIE). This method is not a truly meshless one yet, as an un- 

derlying cell structure is again used for numerical integration. 

To combine the advantages of the MLBIE and the BNM, a Hybrid Boundary Node Method (Hy- 

brid BNM) was introduced by Zhang et al. I83, based on the MLS interpolation scheme and the hybrid 

displacement variational formulation. This method is a truly meshless one as the MLBIE and MLPG-- 

absolutely no cells are required either for interpolation of the solution variables or for the numerical in- 

tegration, and has the dimensionality advantage of the BIE or BNM-- ouly scattered nodes are con- 

structed on the boundary of the domain. However, the HBNM has the drawback of "boundary layer ef- 

fect", i .e .  the accuracy of results in the vicinity of the boundary is very sensitive to the proximity of 

the interior points to the boundary. To avoid this pitfall, a new meshless Regular Hybrid Boundary 

Node Method (RI-IBNM)~9,103 has been proposed, in which the source points of the fundamental solut- 

ions are located outside the domain rather than at the boundary nodes as in the Hybrid BNM or other 

hybrid boundary element models. 

As the RHBNM does not involve any singular or nearly-singular integration, it is possibly viable 

for thin structures. In this paper, several test examples are presented to demonstrate the effectiveness 

and high accuracy of the RHBNM in the analysis of the very thin and/or layered structures, which are 

even in the micro- or nano-scales, as in Refs. [2 ,3] .  

II . THE MLS A P P R O X I M A T I O N  SC'HEME F O R  T H E  2-D R H B N M  

This section gives a brief summary of the MLS approximation, whose excellent illustrations can be 

found in Ref. [ 11 ]. 

It should be noted that this MLS interpolation scheme will be coupled later with 2-D hybrid dis- 

placement variational formulation which uses three independent variables, i .e .  displacement u~ in the 

domain, displacement g~ and traction ~,, i = 1,2, on the boundary, of which the g, and ~, will be in- 

terpolated by MLS scheme. The discussion below use the variables g and ~ to represent any particular 

component of the displacement and traction respectively, for the sake of brevity of index notation. 

In contrast to the BNM, the MLS interpolation in the present approach is independently performed 

on piecewise smooth segments _P~, i = 1 , 2 , - " ,  n which constitute the boundary naturally rather than 

on the whole boundary F .  To approximate the functions ~ and ~ on each Fi over which a number of 
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nodes { st }, I = 1 , 2 , " - ,  N,  are randomly located, the MLS interpolants for g and f are defined as 

~(s )  = ~ p j ( s ) a j ( s )  = p T ( s ) a ( s )  (1) 
j = l  

t ($)  ~. ~ ' ]p j (s )b j ($)  = p T ( s ) b ( $ )  ( 2 )  
j=l 

where s is a curvilinear co-ordinate on Fi,  Pl = 1 and pj ( s ) ,  j = 2 , " ' ,  m are monomials in s. In 

this paper, a quadratic background basis is used, i .e .  
p'r(s)  = [ 1 , s , s 2 ] ,  m = 3 (3) 

The coefficient vectors a ( s ) and b ( s ) are determined by minimizing a weighted discrete L2 norm, 

defined as 
N 

J~(s) = ~ W , ( S ) [ p T ( s t ) a ( s )  - a,]: (4) 
t = l  

N 

j (s) = - i t ] ' -  ( 5 )  
1=1 

where points s, are boundary nodes on Fi ; s is the coordinate of an evaluation point E on Fi ; N is 

the number of boundary nodes in the neighborhood of E for which the weight functions w ( s - s, ) > 0; 

ar and t, are approximations to the nodal values u (s t )  and t(  st ) ,  respectively. 

Solving a ( s )  and b ( s )  by minimizing Jl and J2 in Eqs. (4) and (5 ) ,  and substituting them in- 

to Eqs. (1) and (2) gives a relation which may be written in the form of an interpolation function simi- 

lar to that used in the FEM, i .e .  
N N 

~ ( s )  = ~ - ] ~ t ( s ) a t ,  ~(s) = _ ~ t ( s ) (  (6 ,7)  
1=1 t = l  

where 
m 

�9 , ( s )  = (S) 
j=1 

with the matrices A ( s ) and B ( s ) defined by 
N 

A ( s )  = ~ W , ( S ) p ( s , ) p T ( s , )  (9) 
l=1 

z ( s )  = [ , , , , ( s )p(s , ) ,  . . . ,  (lO) 
The MLS approximation is well defined only when the matrix A in Eq. (9) is non-singular. 

Several kinds of weight function can be seen in the literature, the choice of weight functions and 

the consequences of a choice in the EFG method are discussed in some detail elsewhere Etll . Gaussian 

weight function corresponding to node s, may be written as 

{27 p [ -  ( d f f c ' ) 2 ] - e •  (2 ' /c ' )2]  
w , ( s )  = T T e x - ~ [ -  (~ / c - [ )q  , 0 < d, <~ [7I, (11) 

dr >/ dl 

where dt : t s - s, 1, the absolute value of the distance between an evaluation point and a node, mea- 

sured along F'i, c, is a constant controlling the shape of the weight function, and dl is the size of the 

support for the weight function wl and determines the support of node s , .  The 2t should be chosen 

such that d, would be large enough to have a sufficient number of nodes covered in the domain of defi- 

nition of every sample point ( N I> ra) to ensure the regularity of A.  
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Ill. DEVELOPMENT OF THE REGULAR HYBRID 
BOUNDARY NODE METHOD 

In this section, the following 2-D linear elasticity problem is considered 

~ , j +  b~ = 0 ,  V x E X ;  
u~ = ffi, V x E /-'= (12) 

ti ~ •ijnj = t i ,  g X ~ F t 

where the domain g? is enclosed b y / "  = F'~ + / ' ,  ; ff~ and g~ are the prescribed displacement and trac- 

tion, respectively, on the essential boundary f'u and on the traction boundary /-', ; and n is the out- 

ward normal direction to the b o u n d a r y / ' ,  with ni components. 

The hybrid boundary model here proposed is based on a modified variational principle. The func- 

tions to be independent are: 

- displacement field in the domain, u ,  with u~ components; 

- boundary displacement field, t i ,  with ffi components; 

-boundary  tractions, t ,  with f~ components. 

The corresponding variational functional, /-/H8, is defined as in the hybrid BEM model by De- 

Figueredo and Brebbia In1 

1 
I-ZAB -~ f~(-~l.gi,jCijkll~k,l - bi~i)d~'~ - f l t ( l ~ i  - ~ i )dI~  - ;1.itiuidl~ (13) 

In the above equation, the boundary displacement ffi satisfies the essential boundary conditions, i . e . ,  

2G~ 
ffi = ffl on F= ; C0.z - 1 7  gf0a~ + c<,a,~, where G and v are the shear modulus and Poisson's ratio 

respectively. 

By perfom'ring the variation it can be shown that 

a/-/~ = j ( _  G0. , - b , )a . ,dn  + J ( t , -  ~,)a,.,dF- 

o I v  (ui  - ff i)a~,d/" - o [<(e,  - f , ) a < d r  (14) 

where aii and ti are the stress tensor and the traction vector, re- 

spectively, which are functions of the displacement u i in the doma- 

in. 

With the vanishing of 8_/'/~, the following equivalent integral 

equations can be obtained 

f r ( t~  - ~ i ) S u l d F -  fa (a~  + b i ) S u i d ~  = 0 (15) 

f ( <  - ~,)~,d/~ = 0 (16) 
N 

It can be seen that Eqs. (15) and (16)  hold in any sub-do- 

main, for example, in a sub-domain ~ and its boundaries U, and Fig.1 

L, (where ~Q, is the intersection of the domain ~ and a circle cen- 

tered at a boundary node s j ,  see Fig. 1) .  Therefore, one can use 

the following weak forms on the sub-domain to replace Eqs. (15)  

and (16) 

Pi 

F /7. =&o.N F 

The local domain centered at a 
node s I and the source point 

of fundamental solution corres- 
ponding to a node sl. 
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f - - |  (ao.i + bi)vdg-2 = 
(, 

(t, t i ) v d F  0 (17) 
q+~ J o  

f (/s gi) ,ude 0 (18) 

where v is a test function. 

In Eqs.(17) and (18), ui and ~; on/'~ are represented by Eqs. (6) and (7) ,  but g; and t; on 

L, have not been defined yet. To solve this problem, we deliberately select v such that all integrals 

over Ls vanish. This can be easily accomplished by using the weight function in the MLS approximation 

as v, with the radius ~/1 of the support of the weight function replaced by the radius r; of the sub-do- 

main g'2~. For example, for a node sj 

exp[-  ( d f lc ; )  2] - exp[-  r f lc j )  z] 
v j ( Q )  = 1 - exp[-  ( r ; /c ; )  2] , 0 <~ d; <~ r; (19) 

O, dj >I rj 

where d; is the distance between point Q, in domain s and the nodal point s; .  Therefore, v; ( Q )  

vanishes on L,. 

As in Ref. [ 12], the u and t inside s and on /"  are defined as 

{ } ~ [  ' i ] I  i}  { } fV~l[ I 1 ] I  i}  /s /s /s 2 X t I t l l  t12 X (20,21) 
U ---- = I ~, t = = t t~ ] t x z /s / = I U21 U22 I. X 2 t 2 = t21 _ 

where ulo and tlo are fundamental solutions with the source point at point PI, which is located outside 

the domain and corresponds to node sl; x~ unknown parameters; N N  the total number of boundary 

nodes. 

For a 2-D elasticity problem, the fundamental solutions are 

= 8 z r ( 1 - - l v ) G [ ( 3 -  4v)c~~ - r,~r;] u lij 

(22) 
= - v)r  [(1 - 2v)~ 0. + 2 r i r j ]  ~ + (1 - 2 v ) ( r l n  j - r,jn i) 

where r ( Pj , Q ) = ~/ [ x ( Q )  - x ( Pt ) ]2 + [ y ( Q )  _ y ( PI ) ]2 ; Q and P, are field point and source 

point respectively. And P / i s  determined by 

Pl  -~" SI + h~n(s , )  (23) 

where h is the mesh size; n ( sl ) is the outward normal direction to the boundary at node si ; and ~ is 

the scale factor. As can be imagined, the scale factor ~ plays an important role in the performance of 

the present method. Too small a value for ~ will lead to nearly-singular integrals and thus inaccurate 

results; On the other hand, too large a one will lead to an ill-posed system of algebraic equations as 

well. Numerical tests show that the proper range for ~ is between 3.0 and 7.0.  

As u is expressed by Eq. (20), the term a~.; on the left-hand side in Eq. (17) vanishes. By 

substituting Eqs. (6) ,  (7) ,  (19), (20) and (21) into Eqs. (17) and (18), and omitting the van- 

ished terms and the body force, one has 

~ Ull /s X 
v ; ( 0 ) d F  = I U / ~ I. X 2 1= l Fs U21 F s 0 

= ~ t21 t._ t x 2 r, 0 

vj(a)d/-' 
21 

:1 v j ( Q ) d F  
r  t 2 

(24) 
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Using the above equations for all nodes, one can obtain the final system of equations 

U x  = H ~ ,  T x  = H t  

where 

Utj 

H,j 

(25,26) 

I[' !] I[' Ull u 2 t~l t1~2 
= v j ( Q ) d r  Ttj = 

r '  ' , , t'= J vJ(  s U21 /'/'22 FJs t21 

= = [ x l , x 2 ,  , x , , x ~ l  r s 0 ~ , ( s )  v j ( Q ) d F ,  x T l , ... n N 
s 

= [ t l ,  t , " "  , = [ ^ t  . ~ /s ~U2~ " ' ~ U  1 ~ U 2 3  

For a well-posed problem, the values of either u i or ti are known  at each node on the boundary, 
^ I ^t thus u~ on /-'~ and t~ on F, can be obtained by the following equations 

N N 
at 

i = E Rtj ~J : E RH~[ ( 2 7 )  
J=l J=l 

For edges, u~ are prescribed, and 
N N 

t~ = ~ R u ~ [  = ~ R u t {  (28) 
J=l J=l 

For edges, t~ are prescribed, where R u = [ q~j ( st ) ] - ~ and N is the number of nodes on the edge. 

Therefore, by rearranging the governing Eqs. (25) and (26) ,  one obtains the final system in terms of 

x only, and the unknown vector x is obtained by solving the final equation system. Displacements ui 

and tractions t~ at any point inside domain ~ or on the boundary /~ are evaluated by Eqs. (20) and 

(21) without further integration. 

From the above discussion, one can see that the present method is not merely a tndy meshless 

one, but also a regular one, as no singular integrals or nearly-singular integrals are involved. So it may 

be used to solve thin shell-like structure problems. 

1W. N U M E R I C A L  VERIFICATIONS 
To verify the RHBNM for thin strucWre problems, three test examples are studied in this section, 

together with comparisons with exact solutions (where available). In all examples, the size of support 

for weight function, dt in Eq. (11) ,  is taken to be 9 . 0 h ,  with h as the mesh size, and the parameter 

c, is taken to be such that [ i l / c  I is constant and equal to 4 .0 .  The size of the local domain (radius r j )  

for each node is chosen as 1 .Oh in all computations and the parameter c I in Eq. (19) is taken to be 

such that r j / c j  is constant and equal to 4 .0 .  The scale factor ~ in Eq. (23) for the first example is 

taken to be 7.0 and for the next two examples, 3 .0 .  Also, in all integrations, 5 Gauss points are used 

on each of the two half-parts of / '~ .  

4.1 Test Problem 1: Displacement Field Problem on an Ellipse 
The geometry of this problem is shown in Fig. 2. The half-length of the major axis a is kept cost- 

ant in the study, while the half:length of the minor axis b varies from 1.0a  to 1.0 x 10 -6 a .  This set- 

up, therefore, provides a model of the ellipse which can be categorized as a thin shell, a thick shell 

and even a bulky solid, depending on the values of the ratio b / a .  

A planar displacement profile is described on the boundary as follows 
Ul = y3 _ 3 y x  2 , U2 : -- X 3 + 3xy2  

40 nodes, uniformly placed, are used on the boundary. The output is the relative error defined by a L2 

n o l ' I n  a s  
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-3 

o 

~ 4  
~ t ~  

Exponent, m, for the ratio b/a (10"*) 

Fig.2 Displacement field problem on an ellipse. Fig. 3 Relative errors of tractions t~ and t2 

along the boundary'. 

e -  I t I,~x i=l - ti 

where I t I ~ is the maximum value of t over N sample points, the superscripts ( e ) and ( n )  refer to 

the exact and nmnerical solutions, respectively. Plane strain cases with Young' s modulus E = 2 .5  (in 

consistent units) and the Poisson' s ratio u = 0 .3  have been considered for various ratios b / a .  The rel- 

ative errors of tractions tt and t2 along the whole boundary (with 44 uniformly spaced sample points) 

are shown in Fig. 3. It can be seen that the accuracy of the present RHBNM remains very high even for 

the ratio b /a  in the micro-scale. It should be pointed out that this problem, when the ratio b / a  is in 

the micro-scale, cannot be solved by the BIE/BEM owing to the displacement boundary conditions, as 

discussed in Ref. [ 2 ] .  

4 . 2  Test Problem 2: Thin Coating on a Shaft 

To compare with the BEM developed by Liu et al C3] , the next two related test examples of a shaft 

with a thin coating are taken from Ref. [ 3 ] ,  in which the calculation of conventional BEM and FEM for 

these problems and a comparison of the results by these methods are given. 

The geometry of the shaft and coating is shown in Fig. 4.  The shaft and coating have outer radii r, 

and re respectively, which are considered here : (a)  the thickness h = re -- r, of the coating is uniform 

and approaches zero while r, remains constant, as shown in F i g . 4 ( a ) ,  and (b)  the coating is of non- 

uniform thickness; both rs and rc remain constant, but their centers are misatigned, producing some 

normalized eccentricity 3 - xc , where xc is the center offset, as shown in F i g . 4 ( b ) .  In both cas- 
r • - r ,  

es, uniform pressure p acts on the outer circumference of the coating, and essential boundary condi- 

tions, ul = u2 = 0, are prescribed around the inner circumference. Plane strain conditions with 

Young' s modulus E = 1.92 x 109 Pa and the Poisson' s ratio v = 0 . 2  are assumed and 40 uniformly 

spaced nodes are used, 20 on the outer circle and 20 the inner circle. 

For the case ( a ) ,  an analytical solution for the stress field can be obtained. The relative error of 

the radial stress arr at point A,  defined as % error = a E=~-- a__RnSNM X 100, is shown in Fig. 5 while 
O" E x i t  

the coating thickness varies in the range of 10-1 rs - 10-10 rs �9 Note that as the coating thickness de- 

creases, the solution accuracy remains stable and is very high. 

Figure 6 shows the normalized radial stress a~ at point A.  Note that the asymptotic behavior of 

the RHBNM solution approaches the analytieal value of the sample problem as 3---~0 (case ( a ) ) ,  and 
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Pomt A 

(a) 

Fig. 4 

~ P o i n t  A 

(b) 

Cross section of a shaft with coatings of (a) uniform and (b) non-uniform thickness. 

0.014 
~ 0.013 

-d .~ 0.012 

0.011 

g 0.010 

"~h ~o 0.009 
o.oos 

9 0.007 
m ~ 0.006 

0 
Uniform thickness exponent, m, 

for equation h=10" r, 

Fig. 5 Error magnitude of radial stress at point A 
for uniform coating thickness. 

4# 

Z 

1.07 

1.06 

1.05 

1.04 

1 , 0 3  

1 . 0 2  

1.01 

1 , 0 0  

�9 ' 2  ' ' ' ' 0.0 0 0.4 0.6 0.8 1.0 
Normalized eccentricity 6 

Fig.6 Normalized radial stress at point A for 
nonuniform coating thickness. 

approaches the applied pressure p as ~--~1, which is consistent with the physical interpretation. The 

results in Fig. 6 are almost the same as those in Ref. [ 3 ] .  Very interesting comparison about the results 

and the number of nodes used between BEM and FEM can be seen in Ref. [ 3 ] as well. 

From the above test examples, it can be seen that the present RHBNM is as suitable for thin 

structure problems as the BEM developed by Liu et al. [2,3] 

V . DISCUSSION A N D  CONCLUSIONS 

The applicability of the RHBNM for the analysis of thin shell-like structures is verified in this pa- 

per. It is shown that the present RHBNM, like the BEM developed by Liu et al. [2.3], can solve thin 

shell-like structures with very high accuracy by'using a small number of nodes on the boundary. In- 

stead of identifying the parts of a structure as plates, shells or solids, this approach can treat the struc- 

ture as a single elastic medium and model it continuously without the need to shift to different models. 

The FEM modeling and analysis of shell-like structures are very delicate and demanding in engineering 

practices. However, it is very difficult, and sometimes even impractical, to distinguish among the thin 

shell, thick shell and solid models and then to choose the proper finite element types accordingly. The 

RHBNM developed may provide a very attractive numerical tool for the analysis of thin shell-like struc- 

tures. 

The RHBNM may be more appealing than the BEM developed by Liu et al I2'3] . for its meshless 
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nature. It only requires randomly scattered nodal points to be constructed on the bounding surface of a 

body�9 Without meshing, it can directly use a solid model for a 3-D object�9 Therefore, it can be inter- 

linked with CAD software very easily. 

By coupling with the Fast Multipole Method ~31 , the RHBNM may be capable of solving large 

complicated structures. So it has very good prospects for application in practical engineering and is 

worth further investigation�9 
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